Turn Your Basement Into a Virtual Shooting Gallery

An indoor shooting simulator is easy to add on to most projection based home theater systems, and in most cases is an inexpensive way to add hours of entertainment for the whole family. People of all ages enjoy playing the wide range of games that are available for the system, everything from “Baseball Challenge” to “Elephant Hunter” will keep your family and friends entertained. Utilizing a shooting simulator is not only a great way to add excitement to your home theater room; it is also a get way to keep your shooting skills sharp.

System Basics:

There are a few basic requirements for adding a shooting simulator to an existing home theater. The simulator runs on a normal Windows based computer, software is compatible with Windows XP, Windows Vista and Windows 7. The image is broadcast through a projector to a screen, which most projectors and home theater screens will be suitable for use with this simulator. Now all you need to add is a basic simulator package, which includes a rifle, case, camera and five games. Installation of the simulator will only take about thirty minutes to setup and install the new software and hardware. Now you are ready to start enjoying the very best of simulated shooting. To recap the items you need: computer, projector, screen and a simulator package.

Benefits of Indoor Shooting:

There are many advantages to adding an indoor shooting simulator to you home theater room, these are just a few.

Convenience- having the ability to practice your shooting skills from within your own house, cuts down on drive time to the range and you can fire up your system anytime you want.

Cost Savings- ammunition is expensive! You will save a lot of money practicing your skills using a true to life replica laser firearm verses using live ammo.

Safety- using a laser firearm is a much safer weapon to practice will and it’s a lot better for your hearing.

Shooting Variety- with a shooting simulator you have the ability to practice your skills on a wide range of software titles. You can practice shooting skeet and with just a touch of a button you can switch over to another game and practice your marksmanship on simulated popup targets.

Entertainment- Gather you friends and family, challenge them for the highest score or for bragging rights.

Packages and Software:

With this system, there are many packages of both hardware and software available. Looking for a portable package or maybe a complete package if you don’t have a projector, computer and screen? Those packages and more are available. There are over 35 software titles currently available, which can be purchased separately or in 15 game packages. Software titles are being added, so you will always have the option to buy the latest games on the market. Do you have the best Halloween party on your block? There is a Halloween software package that will insure your party is unforgettable. Do you have a young hunter or marksman that could benefit from “Hunter’s Education” software? It is an option on this simulator. Teach them everything from ethical shooting to animal anatomy, with the hunter’s Ed package. Looking to hone your archery skills? This simulator has packages available for you bow enthusiasts. There are several optional firearms which can be added to the system, to maximize the skill development and enjoyment of the simulator.

Adding a shooting simulator to your theater room is easy and a cost effective way of increasing the entertainment value of your room as well as improve shooting skills. If you would like some more information on the shooting simulators or have any questions please contact me through the website.

Posted in general | Comments Off on Turn Your Basement Into a Virtual Shooting Gallery

Medical Coding History – From Paper to Medial Coding Software

If we define medical coding as the assignment of alphanumerical characters to diagnoses, diseases, and treatments, then medical coding has been traced back to the 1600s in England with the London Bills of Mortality. A more standardized system of coding was developed for classifying death at the tail end of the 19th century. In 1893, Jacque Bertillon, a statistician, created the Bertillon Classification of Causes of Death, a system which was eventually adopted by 26 countries at the beginning of the 20th century. Shortly after the Bertillon Classification system was implemented, people began discussing the possibility of expanding the system beyond mortality as a way of tracking diseases.

By the middle of the 20th century, the World Health Organization (WHO) adopted a goal of a single global classification system for disease and mortality, entitled the International Classification of Diseases, Injuries, and Causes of Death (ICD). This classification system is updated every 10 years. The latest revision, ICD-10, is scheduled for adoption in the United States in 2013.

What started out as a small set of medical codes has evolved into a complex system that was initially standardized by the American Medical Association back in 1966 with current procedure codes (CPT) codes that are updated annually.

In the late 1970s, the Healthcare Common Procedure Coding System (HCPCS) was developed based on CPT. HCPCS has three levels of codes: Level One is the original CPT system. Level Two codes are alphanumeric and include non-physician services such as ambulances and other transportation as well as patient devices such as prosthetic devices. Level Three codes were developed as local codes, and were discontinued in 2003 in order to keep all codes relevant worldwide.

Recently, medical coding systems have been expanded to include other medical specialties. For example, there are coding systems related to disabilities, the dental field, prescription drugs, and mental health.

As the coding systems have become more complex and diverse, the need for training of medical coders has grown exponentially. Private training schools and public colleges throughout the country have developed certification programs. In order to be awarded a certificate, students must obtain a two-year degree from an accredited medical coding school and pass an exam given by the AHIMA.

Over the past 20 years, many coding processes have shifted from a paper-based system to a computer-based system using medical coding software and medical billing software. Many companies sell complete medical software-based coding solutions and myriad of products for specific medical disciplines, such as products that are specifically tailored to skilled nursing facilities, physicians, hospitals, surgery, cardiology, and more.

As medical facilities and professionals begin preparing for the conversion to ICD-10 in 2013, the need for more sophisticated medical coding software solutions and qualified medical coders will continue to grow.

CPT is a registered trademark of the American Medical Association.

Posted in general | Comments Off on Medical Coding History – From Paper to Medial Coding Software

Futon Frame Maintenance and Common Replacement Parts and Hardware

A little preventative maintenance of your futon frame can greatly increase how long it lasts. We recommend checking the bolts on your futon frame every month or two, depending on how often it's used. If they are loose, gently tighten them, but be careful not to over tighten them. If you have a wooden frame, you can rub a bar of Ivory soap in the arm tracks every now and then, to keep things operating smoothly.

Most of the damage that we see is from forcing the frame to operate, when it's stuck. If you are converting your frame from a bed to a sofa, or from a sofa to a bed, and it does not easily convert, stop what you are doing, and remove the mattress, and carefully examine why it's not moving easily. Usually if you try to convert the frame and you pull on one side more than the other, something will jam, and if forced, you may break something.

Normally a guest will try to make their bed in the morning, and not knowing how to do it, they may break your frame. We suggest telling your guests to leave the futon as a bed, and you'll take care of changing it from a bed to a sofa for them.

Some parts wear out, and some of the plastic parts can dry out over the years. If the bolts are not tightened, a part can move around in a way that it's not recommended to, and that can cause it to break. People ask us why they do not make some of the parts in futon frames out of metal so they're never break. The reason is, if they were metal, and something jammed up, and was forced, the seat, or back, or an arm would crack, and that would be a more costly repair.

Here's a list of some of the more common futon frame hardware and parts. This is by no means a complete listing of all the parts, but it includes most of the common parts. Some items are called more than one name, so we list them twice. Futon store that has been around a long time, might even have obsoleste parts that you might need.

If you need a part that you can not find anywhere, consult a good futon store who's willing to help you, and give them a description and a couple of pictures showing what you need and see if they are willing to help you. They may need to know the name of the manufacturer of the frame because there are many frames that look the same, but the size of the bolts or seat decks and other items will all be slightly different.

Futon Bolts
Standard Futon Hinges
Click Click Hinges
Triple Click Hinges
Futon Mattress Storage Bags
Oblong Rollers
Carriage Blocks
Round Futon Rollers
Double Futon Rollers
Nylon Roller Inserts
Futon Barrel Nuts, Nuts, and Cross Dowels
Larger Futon Barrel Nuts
Futon Seat Stoppers
Futon Storage Bags
Allen Wrenches
Larger Allen Wrenches
Plastic Leg Caps
1/2 "Futon Hardware Sets
5/8 "Futon Hardware Sets
Angle Support Brackets
Decorative Bolt Covers or Plugs
Clevis Pins and Assemblies
Various Plastic Rollers, Glides and Carriage Blocks
Stretcher Support Rails
Futon Seat Decks
Futon Back Decks
Futon Arms
Cotter Pins
Washers and Clips
Futon Slats and Supports

Posted in general | Comments Off on Futon Frame Maintenance and Common Replacement Parts and Hardware

What Is The Difference Between ERP And Enterprise System?

Enterprise system and Enterprise Resource Planning System terms are similar but there is difference between an enterprise system and an ERP system. An ES or enterprise system is a large scale system which includes packages like ERP and CRM. ERP is a subset of Enterprise System or it can be said that ES is a superset of ERP. It contains a variety of solutions. ES contains applications and packaged solutions which can be directly used in an enterprise. On the other hand ERP system is the automation of the business processes and the solutions are in the form of modules which are designed according to the client’s requirements.

The functions are customized according to the client’s business environment. Enterprise system does not include architecture of other solutions whereas an ERP implementation automates systems using technical aspects. ERP system includes architectures and databases and is client server architecture. The system is server based therefore the consultant needs to be aware of the technical aspect too.

Another difference between an ES and an ERP system is that the ERP is aimed at improving the functionalities of the organization whereas the ES helps to improve the overall maintenance and accuracy. It provides for better solutions and aids in decision making. ES is difficult to implement compared to Enterprise resource planning and even the timeframe needed for implementation maybe more. The overall impact is high but so are the risks involved. If the ES is not implemented in the right manner, it can cause business failure and if implemented properly it can increase the efficiency and profits of the business organization. It is normally required when there is a big drawback in the current procedures and methodologies in the organization and need to be corrected. The company going in for enterprise system needs to be careful while choosing the software and the vendors due to the risk of failure involved.

The difference between an enterprise system and an ERP system is that ERP is mostly used for medium scale companies to big companies and ES is restricted to the big companies. There are many complex functions involved in big companies which cannot be provided solutions for alone by ERP. The role of ERP is restricted when compared to enterprise system because it does not include customer relationship or vendor management.

These applications are needed when the business process is complex and on a big scale. Therefore bigger organizations need to go with ES instead of enterprise resource planning alone. ERP is also an important system to streamline the internal processes but it does not provide for taking care of the external processes. Enterprise system takes care of the end to end business process of organization since it involves other applications also like SCM and CRM. There is quite a lot of difference between an enterprise system and an ERP and it depends on the company whether it wants to go with an ES to streamline the entire process starting from supplying, production and customer or whether he wants to go with an ERP system to streamline the internal process.

Posted in general | Comments Off on What Is The Difference Between ERP And Enterprise System?

Choosing the Right SDLC For Your Project

Choosing the right SDLC (Software Development Lifecycle) methodology for your project is as important to the success of the project as the implementation of any project management best practices. Choose the wrong software methodology and you will add time to the development cycle. Adding extra time to the development cycle will increase your budget and very likely prevent you from delivering the project on time.

Choosing the wrong methodology can also hamper your effective management of the project and may also interfere with the delivery of some of the project’s goals and objectives. Software development methodologies are another tool in the development shop’s tool inventory, much like your project management best practices are tools in your project manager’s tool kit. You wouldn’t choose a chainsaw to finish the edges on your kitchen cabinet doors because you know you wouldn’t get the results you want. Choose your software methodology carefully to avoid spoiling your project results.

I realize that not every project manager can choose the software methodology they will use on every project. Your organization may have invested heavily in the software methodology and supporting tools used to develop their software. There’s not much you can do in this case. Your organization won’t look favorably on a request to cast aside a methodology and tools they’ve spent thousands of dollars on because you recommend a different methodology for your project. We’ll give you some tips on how to tailor some of the methodologies to better fit with your project requirements later in this article. In the meantime, before your organization invests in software development methodologies you, or your PMO, ought to be consulted so that at least a majority of projects are benefited from a good fit.

This article won’t cover every SDLC out there but we will attempt to cover the most popular ones.

Scrum

Scrum is a name rather than an acronym (which is why I haven’t capitalized the letters), although some users have created acronyms, and is commonly used together with agile software development. Scrum is typically chosen because of its iterative nature and its ability to deliver working software quickly. It is chosen to develop new products for those reasons. There is typically no role for a project manager in this methodology, the 3 key roles are: the scrum master (replacing the project manager), the product owner, and the team who design and build the system. There is only one role that you would be asked to play if your organization is committed to using this methodology, scrum master. If you should determine that this would actually be the best methodology for your project, you’ll have to re-examine your role as project manager. You can either identify a suitable scrum master and return to the bench, or fill the role of scrum master.

Scrum suits software development projects where its important for the project to deliver working software quickly. Scrum is an iterative methodology and uses cycles called sprints, to build a working system. Requirements are captured in a “backlog” and a set of requirements is chosen with the help of the product manager. Requirements are chosen based on 2 criteria: the requirement takes priority over others left in the backlog and the set of requirements chosen will build a functioning system.

During the sprint, which can last from 2 to 4 weeks maximum, no changes can be made to the requirements in the sprint. This is one of the reasons that a project manager isn’t necessary for this methodology. There is no need for requirements management because no changes are allowed to the requirements under development. All changes must occur in the requirements set in the backlog.

Scrum will be suitable for software development projects where the product is a new software product. By new I mean that it is new to the organization undertaking the project, not in general. The methodology was developed to address a need for a method to build software when its necessary to learn on the fly, not all requirements are known to the organization and the focus is on delivering a working prototype quickly to demonstrate capabilities. You need to be careful when choosing requirements to deliver in each sprint to ensure that the set developed builds a software system that is capable of demonstrating the feature set supporting the requirements included.

You also need to ensure that these requirements are well known and understood as no changes are allowed once the sprint starts. This means that any changes to the requirements must come through a new set of requirements in the backlog making changes to these requirements very expensive.

This methodology divides stakeholders into 2 groups: pigs and chickens. The inventors of this methodology chose this analogy based on the story of the pig and the chicken – it goes something like this. A pig and a chicken were walking down the road one morning and happened to notice some poor children who looked like they hadn’t eaten for days. The compassionate chicken said to the pig: “Why don’t we make those children a breakfast of ham and eggs?” The pig said: “I’m not happy with your suggestion. You’re just involved in making the breakfast, I’m totally committed!” The point to this is the product owner, scrum master, and team are all in the “pig” group. All others are in the “chicken” group. You will be in the “chicken” group if you choose the Scrum methodology as a project manager.

Waterfall

Waterfall methodology calls for each phase of the development cycle to be repeated once only. Requirements will be gathered and translated into functional specifications once, functional specifications will be translated to design once, designs will be built into software components once and the components will be tested once. The advantage of this methodology is its focus. You can concentrate the effort of all your analysts on producing functional specifications during one period rather than have the effort dispersed throughout the entire project. Focusing your resources in this way also reduces the window during which resources will be required. Programmers will not be engaged until all the functional specifications have been written and approved.

The disadvantage of this approach is its inability to teach the project team anything during the project. A key difference between the waterfall approach and an iterative methodology, such as Scrum or RUP, is the opportunity to learn lessons from the current iteration which will improve the team’s effectiveness with the next iteration. The waterfall methodology is an ideal methodology to use when the project team has built software systems very similar to the one your project is to deliver and has nothing to learn from development that would improve their performance. A good example of a project which would benefit from the waterfall methodology is a project to add functionality to a system the project team built in the not too distant past. Another example of an environment that is well suited to the waterfall methodology is a program to maintain a software system where a project is scheduled for specific periods to enhance the system. For example, an order and configuration software system which is enhanced every 4 months.

The waterfall methodology does not lend itself particularly well to projects where the requirements are not clearly understood at the outset. Iterative approaches allow the product owners or user community to examine the result of building a sub-set of requirements. Exercising the sub-set of requirements in the iteration’s build may cause the product owners or user community to re-examine those requirements or requirements to be built. You won’t have that opportunity with the waterfall method so you need to be certain of your requirements before you begin the build phase. Interpreting requirements into functionality is not the only aspect of development that can benefit from an iterative approach. Designing the system and building it can also benefit from doing these activities iteratively. You should use the waterfall method when your team is familiar with the system being developed and the tools used to develop it. You should avoid using it when developing a system for the first time or using a completely new set of tools to develop the system.

RUP

The Rational Unified Process, or RUP, combines an iterative approach with use cases to govern system development. RUP is a methodology supported by IBM and IBM provides tools (e.g. Rational Rose) that support the methodology. RUP divides the project into 4 phases:

1. Inception phase – produces requirements, business case, and high level use cases

2.Elaboration phase – produces refined use cases, architecture, a refined risk list, a refined business case, and a project plan

3. Construction phase – produces the system

4. Transition phase – transitions the system from development to production

RUP also defines 9 disciplines: 6 engineering disciplines, and 3 supporting disciplines: Configuration and Change Management, Project Management, and environment so is intended to work hand in hand with project management best practices.

Iteration is not limited to a specific project phase – it may even be used to govern the inception phase, but is most applicable to the construction phase. The project manager is responsible for an overall project plan which defines the deliverables for each phase, and a detailed iteration plan which manages the deliverables and tasks belonging to each phase. The purpose of the iterations is to better identify risks and mitigate them.

RUP is essentially a cross between Scrum and waterfall in that it only applies an iterative approach to project phases where the most benefit can be derived from it. RUP also emphasizes the architecture of the system being built. The strengths of RUP are its adaptability to different types of projects. You could simulate some of the aspects of a Scrum method by making all 4 phases iterative, or you could simulate the waterfall method by choosing to avoid iterations altogether. RUP will be especially useful to you when you have some familiarity with the technology but need the help of Use Cases to help clarify your requirements. Use Cases can be combined with storyboarding when you are developing a software system with a user interface to simulate the interaction between the user and the system. Avoid using RUP where your team is very familiar with the technology and the system being developed and your product owners and users don’t need use cases to help clarify their requirements.

RUP is one of those methodologies that your organization is very likely to have invested heavily in. If that’s your situation, you probably don’t have the authority to select another methodology but you can tailor RUP to suit your project. Use iterations to eliminate risks and unknowns that stem from your team’s unfamiliarity with the technology or the system, or eliminate iterations where you would otherwise use the waterfall method.

JAD

Joint Application Development, or JAD, is another methodology developed by IBM. It’s main focus is on the capture and interpretation of requirements but can be used to manage that phase in other methodologies such as waterfall. JAD gathers participants in a room to articulate and clarify requirements for the system. The project manager is required for the workshop to provide background information on the project’s goals, objectives, and system requirements. The workshop also requires a facilitator, a scribe to capture requirements, participants who contribute requirements, and members of the development team whose purpose is to observe.

JAD can be used to quickly clarify and refine requirements because all the players are gathered in one room. Your developers can avert misunderstandings or ambiguities in requirements by questioning the participants. This method can be used with just about any software methodology. Avoid using it where the organization’s needs are not clearly understood or on large, complex projects.

RAD

RAD is an acronym for Rapid Application Development uses an iterative approach and prototyping to speed application development. Prototyping begins by building the data models and business process models that will define the software application. The prototypes are used to verify and refine the business and data models in an iterative cycle until a data model and software design are refined enough to begin construction.

The purpose of RAD is to enable development teams to create and deploy software systems in a relatively short period of time. It does this in part by replacing the traditional methods of requirements gathering, analysis, and design with prototyping and modeling, the prototyping and modeling allow the team to prove the application components faster than traditional methods such as waterfall. The advantage of this method is it facilitates rapid development by eliminating design overhead. It’s disadvantage is that in eliminating design overhead it also eliminates much of the safety net which prevents requirements from being improperly interpreted or missed altogether.

RAD is suitable for projects where the requirements are fairly well known in advance and the data is either an industry or business standard, or already in existence in the organization. It is also suitable for a small development team, or a project where the system can be broken down into individual applications that require small teams. RAD is not suitable for large, complex projects or projects where the requirements are not well understood.

LSD

Lean Software Development, or LSD, applies the principles of waste reduction from the manufacturing world to the business of developing software. The goal of LSD is to produce software in 1/3 the time, on 1/3 the budget, and with 1/3 the defects of comparable methods. Lean does this by applying 7 principles to the endeavor of software development:

1. Eliminate waste

2. Amplify Learning (both technical and business)

3. Decide on requirements as late as possible

4. Deliver as fast as possible

5. Empower the team

6. Build integrity

7. See the whole

Although Lean Manufacturing has been around for some time, its application to the process of developing software is relatively new so I wouldn’t call it a mature process.

LSD would be a suitable method to use where you have a subject matter expert in the method who has some practical experience in applying lean methods to a software development project. “Amplified” learning implies that your development team has a depth of knowledge in the software tools provided, and also a breadth of knowledge that includes an understanding of the business needs of the client. LSD would be suitable for a project where the development team has these attributes.

LSD depends on a quick turnaround and the late finalization of requirements to eliminate the majority of change requests, so will not be suitable for a project where a delayed finalization of requirements will have a poor chance of eliminating change requests, or the size and complexity of the system being developed would prevent a quick turnaround.

Extreme Programming (XP)

Extreme programming places emphasis on an ability to accommodate changes to requirements throughout the development cycle and testing so that the code produced is of a high degree of quality and has a low failure rate in the field. XP requires the developers to write concise, clear, and simple code to solve problems. This code is then thoroughly tested by unit tests to ensure that the code works exactly as the programmer intends and acceptance tests to ensure that the code meets the customer’s needs. These tests are accumulated so that all new code passes through them and the chances for a failure in the field are reduced.

XP requires the development team to listen carefully to the needs and requirements of the customer. Ambiguities will be clarified by asking questions and providing feedback to the customer which clarifies the requirements. This ability implies a certain degree of familiarity with the customer’s business; the team will be less likely to understand the customer’s needs if they don’t understand their business.

The intent of XP is to enhance coding, testing, and listening to the point where there is less dependency on design. At some point it is expected that the system will become sufficiently complex so that it needs a design. The intent of the design is not to ensure that the coding will be tight, but that the various components will fit together and function smoothly.

XP would be a suitable software development method where the development team is knowledgeable about the customers business and have the tools to conduct the level of testing required for this method. Tools would include automated unit testing and reporting tools, issue capture and tracking tools, and multiple test platforms. Developers who are also business analysts and can translate a requirement directly to code are a necessity because design is more architectural than detail. This skill is also required as developers implement changes directly into the software.

XP won’t be suitable where the development team does not possess business analysis experience and where testing is done by a quality assurance team rather than by the development team. The method can work for large complex projects as well as simple smaller ones.

There is no law that states you must choose one or the other of these methodologies for your software project. The list I’ve given you here is not a totally comprehensive list and some methodologies don’t appear on it (e.g. Agile) so if you feel that there is some other methodology that will better suit your project, run with it. You should also look at combining some of the features of each of these methods to custom make a methodology for your project. For example, the desire to eliminate waste from the process of developing software is applicable to any method you choose and there is likely waste that could be eliminated in any development shop.

Be careful to choose a methodology that is a good fit for your team, stakeholders, and customer as well as your project. Bringing in a new development methodology that your team will struggle to learn at the same time they are trying to meet tight deadlines is not a good idea. On the other hand, if you have the latitude you may want to begin learning a new method with your project.

Posted in general | Comments Off on Choosing the Right SDLC For Your Project

Learn How to Fix “Runtime Error 53 File Not Found” Easily

Computer errors generally plague us a lot. They have to be removed immediately before they can cause any further problems. One such error is the run time error 53. It shows the message “runtime error 53 file not found”.

In this error, problem occurs when a software program that is installed on the PC shows this error because it is trying to reach a DLL file that has been removed from the windows registry. This registry contains all the files that are used by Windows for executing any kind of commands by human users. This DLL file might have never been installed on the computer itself.

To fix runtime error 53 from your system, some simple steps have to be followed. Such steps include clicking on the start menu and then landing at the control panel. After you reached the control panel, open the programs and features icon. Open up all the programs stored in the computer through it. Uninstall the program, which produced the run time error 53 message. A window will also open up telling the user that the program has been removed from the system.

To make sure that the DLL file is stored again on the computer, one has to remove the program and then put it back. The program can be reintroduced into the system through a hard disk or a CD. Instructions will appear on the screen as this program gets installed. After clicking on the install it now option, the user will see the option of terms and conditions on the screen. Click on the “I agree” choice to continue with the installation. The operating systems that generally display this error are Windows XP, Windows Vista and Windows 7.

Run the program to ensure that runtime error 53 is not displayed again. If the error is still being produced, then contact the company, which supplied you with the software.

It is also intelligent on your part if you find out about the compatibility of your software with the operating system of your computer or other software. You can find out about this compatibility through an online research. The website of the software developer can also yield you such details. Tell the software developer about the intricacies of your system to get an adequate response from him about the runtime error 53.

However, the last and most easy solution to fix “runtime error 53 file not found” error is using windows registry cleaner software. Registry cleaner software can always eradicate any registry errors produced by wrong entries, which cause a runtime error 53. It can delete all the useless entries in the registry that are causing such an error. Using such software can ensure that you get an error-free system.

Posted in general | Comments Off on Learn How to Fix “Runtime Error 53 File Not Found” Easily

Texas Two Step Strategy – Everything You Need to Know

The Texas Two Step lottery is a great example of a game that is both strategic and fun. The state lottery is an excellent arena for you to shell out your extra dollars while learning about alternative lotto mechanics. In the state of Texas, the Texas Two Step is considered to be the most popular form of lottery. The game beings when an individual is asked to pick four number from and in between 1 to 35. Like most lotto types, this also has a bonus ball number, which can increase your chances of winning. The grand price for this unique game does not go below two hundred thousand dollars so long as you make five matches. If you are also quite hesitant to pick your own number, the quick pick system also applies to the Texas Two Step lottery. A multi-draw feature also allows you to bet for ten advance drawings at once by simply making a distinguishable mark in the designated ticket boxes. Single plays cost only US$1 each and can reflect winnings up to a hundred thousand dollars.

Most lottery systems base on luck as foundation for winning. Unfortunately, even with the convenience of quick picks and other strategies, chances of winning are still small. One effective way to increase the chances of gaining back positive results from your chosen number is by adhering to the Wheeling Systems. Generally, wheeling systems do not guarantee an automatic win after placing your number picks in the Texas Two Step. However, the mechanism gives you more chances of bringing home multiple tier prizes as opposed to you simply randomly selecting the number, or relying on quick picks. The odds of winning the Texas Two Step prize are statistically ranging from 1 to 32. The overall ratio of victory can be quite unsatisfactory if played with mere dependence on luck. Although you can win $5 for simply matching the bonus ball number, naturally, anyone would still want to vie for the grand prize.

There are also a handful of lotto software that provide good combination numbers for players. Most people confirm the effectiveness of most online programs in tracking the best numeral combinations for lottery. You may program these to suit your needs and according to the type of lottery that you participate in. For Texas Two Step, it is much easier to use a software to calculate possible combinations as it has lesser selections or numbers compared to most lotto games.

For serious lotto players, individuals simply log onto the website and place their bets randomly. Sites also offer a few tips and strategies on how to best employ their gaming techniques. You may be able to view advices on when is the best time to place your bets and how to purchase your tickets quickly. Other websites also present lottery news, which is also an effective way to keep track of your bets. Bear in mind that in order for a player to achieve positive results while playing lotto, the correct strategy and technique must put in place so as to lead you to triumph and victory.

Posted in general | Comments Off on Texas Two Step Strategy – Everything You Need to Know

Computer Hardware Course – The Advantages of Taking It

Computer hardware courses are an excellent way to learn how to manage the inevitable computer failures that you will encounter as you find yourself hanging on your computer more and more everyday. While you do have the option of taking your computer to the service center it can cost you a lot of time and money. Your computer hardware course is invaluable for helping you understand the hardware requirements for your computer that will be enable you to jump to the rescue instead of trudging along to the repair shop.

It does not take an engineer or a technician to be successful in learning about computer hardware. If you are interested in engineering or technician positions however, a background in computer hardware can make you a far more valuable person in your field and can enhance your employability tremendously.

To troubleshoot your computer you can do very well with a simple computer hardware course. You can become your own specialist and forgo spending the money on an IT specialist.

The time invested in a computer hardware study program will pay off quickly when things go wrong. But, this is not the only reason taking a computer hardware course would be a good plan.

Not only will you be able to fix your computer, but you will have the knowledge to build a computer from scratch. The cost of computer parts is often far less expensive than buying a pre-made package. You will also be able to customize your computer so that it is perfectly designed for your needs.

By avoiding the cost of labor from the computer store you will have a far less expensive computer that is perfect for you. You will also no longer need to worry about taking your computer in for repairs as you will know just how to fix what goes wrong.

Computer knowledge is in high demand no matter what career you are involved in. With the information you learn in a computer hardware course you will be able to take on an IT position. Such positions are in high demand as a limited number of people have the knowledge to take on an IT role.

The time needed to take a computer hardware course is well worth the investment. Learning about software and programming can only make you even better with your computer goals. If you are limited in time, not to worry. Many courses are available online or on CD for you to do at home.

Take some time to discover exactly what will be covered in your course. The computer technology field is huge, so you will need to focus. You will never be able to learn everything about computer hardware in a single course. It takes a lifetime of study to learn, and with technology constantly changing you will need to continuously work on keeping your knowledge up to date. A computer hardware course will bring you a chance to get ahead of the game and keep up with your own computer.

Louis Zhang, computerhardwarecute dot com

Posted in general | Comments Off on Computer Hardware Course – The Advantages of Taking It

Why Do We Need Software Engineering?

To understand the necessity for software engineering, we must pause briefly to look back at the recent history of computing. This history will help us to understand the problems that started to become obvious in the late sixties and early seventies, and the solutions that have led to the creation of the field of software engineering. These problems were referred to by some as “The software Crisis,” so named for the symptoms of the problem. The situation might also been called “The Complexity Barrier,” so named for the primary cause of the problems. Some refer to the software crisis in the past tense. The crisis is far from over, but thanks to the development of many new techniques that are now included under the title of software engineering, we have made and are continuing to make progress.

In the early days of computing the primary concern was with building or acquiring the hardware. Software was almost expected to take care of itself. The consensus held that “hardware” is “hard” to change, while “software” is “soft,” or easy to change. According, most people in the industry carefully planned hardware development but gave considerably less forethought to the software. If the software didn’t work, they believed, it would be easy enough to change it until it did work. In that case, why make the effort to plan?

The cost of software amounted to such a small fraction of the cost of the hardware that no one considered it very important to manage its development. Everyone, however, saw the importance of producing programs that were efficient and ran fast because this saved time on the expensive hardware. People time was assumed to save machine time. Making the people process efficient received little priority.

This approach proved satisfactory in the early days of computing, when the software was simple. However, as computing matured, programs became more complex and projects grew larger whereas programs had since been routinely specified, written, operated, and maintained all by the same person, programs began to be developed by teams of programmers to meet someone else’s expectations.

Individual effort gave way to team effort. Communication and coordination which once went on within the head of one person had to occur between the heads of many persons, making the whole process very much more complicated. As a result, communication, management, planning and documentation became critical.

Consider this analogy: a carpenter might work alone to build a simple house for himself or herself without more than a general concept of a plan. He or she could work things out or make adjustments as the work progressed. That’s how early programs were written. But if the home is more elaborate, or if it is built for someone else, the carpenter has to plan more carefully how the house is to be built. Plans need to be reviewed with the future owner before construction starts. And if the house is to be built by many carpenters, the whole project certainly has to be planned before work starts so that as one carpenter builds one part of the house, another is not building the other side of a different house. Scheduling becomes a key element so that cement contractors pour the basement walls before the carpenters start the framing. As the house becomes more complex and more people’s work has to be coordinated, blueprints and management plans are required.

As programs became more complex, the early methods used to make blueprints (flowcharts) were no longer satisfactory to represent this greater complexity. And thus it became difficult for one person who needed a program written to convey to another person, the programmer, just what was wanted, or for programmers to convey to each other what they were doing. In fact, without better methods of representation it became difficult for even one programmer to keep track of what he or she is doing.

The times required to write programs and their costs began to exceed to all estimates. It was not unusual for systems to cost more than twice what had been estimated and to take weeks, months or years longer than expected to complete. The systems turned over to the client frequently did not work correctly because the money or time had run out before the programs could be made to work as originally intended. Or the program was so complex that every attempt to fix a problem produced more problems than it fixed. As clients finally saw what they were getting, they often changed their minds about what they wanted. At least one very large military software systems project costing several hundred million dollars was abandoned because it could never be made to work properly.

The quality of programs also became a big concern. As computers and their programs were used for more vital tasks, like monitoring life support equipment, program quality took on new meaning. Since we had increased our dependency on computers and in many cases could no longer get along without them, we discovered how important it is that they work correctly.

Making a change within a complex program turned out to be very expensive. Often even to get the program to do something slightly different was so hard that it was easier to throw out the old program and start over. This, of course, was costly. Part of the evolution in the software engineering approach was learning to develop systems that are built well enough the first time so that simple changes can be made easily.

At the same time, hardware was growing ever less expensive. Tubes were replaced by transistors and transistors were replaced by integrated circuits until micro computers costing less than three thousand dollars have become several million dollars. As an indication of how fast change was occurring, the cost of a given amount of computing decreases by one half every two years. Given this realignment, the times and costs to develop the software were no longer so small, compared to the hardware, that they could be ignored.

As the cost of hardware plummeted, software continued to be written by humans, whose wages were rising. The savings from productivity improvements in software development from the use of assemblers, compilers, and data base management systems did not proceed as rapidly as the savings in hardware costs. Indeed, today software costs not only can no longer be ignored, they have become larger than the hardware costs. Some current developments, such as nonprocedural (fourth generation) languages and the use of artificial intelligence (fifth generation), show promise of increasing software development productivity, but we are only beginning to see their potential.

Another problem was that in the past programs were often before it was fully understood what the program needed to do. Once the program had been written, the client began to express dissatisfaction. And if the client is dissatisfied, ultimately the producer, too, was unhappy. As time went by software developers learned to lay out with paper and pencil exactly what they intended to do before starting. Then they could review the plans with the client to see if they met the client’s expectations. It is simpler and less expensive to make changes to this paper-and-pencil version than to make them after the system has been built. Using good planning makes it less likely that changes will have to be made once the program is finished.

Unfortunately, until several years ago no good method of representation existed to describe satisfactorily systems as complex as those that are being developed today. The only good representation of what the product will look like was the finished product itself. Developers could not show clients what they were planning. And clients could not see whether what the software was what they wanted until it was finally built. Then it was too expensive to change.

Again, consider the analogy of building construction. An architect can draw a floor plan. The client can usually gain some understanding of what the architect has planned and give feed back as to whether it is appropriate. Floor plans are reasonably easy for the layperson to understand because most people are familiar with the drawings representing geometrical objects. The architect and the client share common concepts about space and geometry. But the software engineer must represent for the client a system involving logic and information processing. Since they do not already have a language of common concepts, the software engineer must teach a new language to the client before they can communicate.

Moreover, it is important that this language be simple so it can be learned quickly.

Posted in general | Comments Off on Why Do We Need Software Engineering?

The Importance Of Excel In The Workplace

Excel is perhaps the most important computer software program used in the workplace today. That’s why so many workers and prospective employees are required to learn Excel in order to enter or remain in the workplace.

From the viewpoint of the employer, particularly those in the field of information systems, the use of Excel as an end-user computing tool is essential. Not only are many business professionals using Excel to perform everyday functional tasks in the workplace, an increasing number of employers rely on Excel for decision support.

In general, Excel dominates the spreadsheet product industry with a market share estimated at 90 percent. Excel 2007 has the capacity for spreadsheets of up to a million rows by 16,000 columns, enabling the user to import and work with massive amounts of data and achieve faster calculation performance than ever before.

Outside the workplace, Excel is in broad use for everyday problem solving.

Let’s say you have a home office. You can use Excel to calculate sales tax on a purchase, calculate the cost of a trip by car, create a temperature converter, calculate the price of pizza per square inch and do analysis of inputted data. You can track your debt, income and assets, determine your debt to income ratio, calculate your net worth, and use this information to prepare for the process of applying for a mortgage on a new house. The personal uses for Excel are almost as endless as the business uses for this software – and an Excel tutorial delves into the practical uses of the program for personal and business use.

The use of spreadsheets on computers is not new. Spreadsheets, in electronic form, have been in existence since before the introduction of the personal computer. Forerunners to Excel and Lotus 1-2-3 were packages such as VisiCalc, developed and modeled on the accountant’s financial ledger. Since 1987, spreadsheet programs have been impacting the business world. Along the way, computerized spreadsheets have become a pervasive and increasingly effective tool for comparative data analysis throughout the world.

Today, end users employ Excel to create and modify spreadsheets as well as to author web pages with links and complex formatting specifications. They create macros and scripts. While some of these programs are small, one-shot calculations, many are much more critical and affect significant financial decisions and business transactions.

Widely used by businesses, service agencies, volunteer groups, private sector organizations, scientists, students, educators, trainers, researchers, journalists, accountants and others, Microsoft Excel has become a staple of end users and business professionals.

The beauty of Excel is that it can be used as a receiver of workplace or business data, or as a calculator, a decision support tool, a data converter or even a display spreadsheet for information interpretation. Excel can create a chart or graph, operate in conjunction with Mail Merge functions, import data from the Internet, create a concept map and sequentially rank information by importance.

Excel offers new data analysis and visualization tools that assist in analyzing information, spotting trends and accessing information more easily than in the past. Using conditional formatting with rich data display schemes, you can evaluate and illustrate important trends and highlight exceptions with colored gradients, data bars and icons.

Indeed, Excel can be customized to perform such a wide variety of functions that many businesses can’t operate without it. Excel training has become mandatory in many workplaces; in fact, computer software training is a must for any workplace trying to keep up with the times.

Let’s say you’re an employer with 97 workers, 17 of whom called in sick today, and you want to know the percentage represented by absentees. Excel can do that. You can learn Excel and use it to determine the ratio of male to female employees, the percentage of minorities on the payroll, and the ranking of each worker by compensation package amount, including the percentages of that package according to pay and benefits. You can use Excel to keep track of production by department, information that may assist you in future development plans. You can create additional spreadsheets to track data on vendors and customers while maintaining an ongoing inventory of product stock.

Let’s say you want to know your business production versus cost. You don’t have to be a math wiz – you just have to learn Excel. Excel allows you to input all of the data, analyze it, sort it according to your customized format, and display the results with color, shading, backgrounds, icons and other gimmicks that offer time-saving assistance in later locating precisely the information desired. If this spreadsheet is for presentation purposes, Excel helps you put it together in such a visually appealing way that the data may seem to pop and sparkle.

The single most important thing an employer may do is learn Excel – it is one of the most essential tools of the workplace.

Excel and Microsoft are trademarks of Microsoft Corporation, registered in the U.S. and other countries. Lotus is a registered trademark of International Business Machines Corporation in the U.S. and/or other countries.

Posted in general | Comments Off on The Importance Of Excel In The Workplace